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1. INTRODUCTION

In the present study, the structure of the three dimensional
transonic shear flow is examined in the context of a time dependent
computer experiment. The specific problem studied is that of flow
through a linear cascade of blades at zero angle of attack to the
incident flow. The three dimensional features of the flow are
introduced by the presence of a volocity nonuniformity along the
span direction in the incident flow. This spanwise velocity profile
is manifested as a spanwise Mach number profile; and this Mach number
profile is taken to be transonic possessing a subsonic region at one
end of the span (e.g. the hub) and a supersonic region at the opposite
end of the span (e.g. the tip). Such a flow possesses certain features
which are characteristic of the flow incident on a transonic turbo-

machine rotor.

2. TRANSONIC FLOW IN A TURBOMACHINE CASCADE

The problem of three dimensional transonic shear flow is, in
many senses, a classic problem. It follows directly as an extension
of a classic problem which is already understood in considerable
detail: that of two dimensional (span-wise uniform) transonic flow over an
airfoil or turbomachine blade.

For the two dimensional case it is known that as the incident Mach
number is steadily increased in the subsonic range a critical Mach number
is reached at which the flow becomes sonic at some point on the blade.

As the Mach number is further increased, a supersonic region appears
(enveloped by the sonic bubble). For most shapes, as the Mach number
increases this supersonic region is terminated by a concave forward shock.
As the Mach number increases further the terminating shock moves

rearward until, as the Mach number slightly exceeds unity (supersonic incident



flow) the rearward shock stands at the trailing edge and a shock develops at
the leading edge. This structure is confirmed by numerous experiments (which

also reveal the shock boundary layer interaction) and by a remarkable traditionm

(1)

of analysis beginning with the classical work of the Hodograph

(2)

extending over

the numerical finite difference work of Emmons and the non-linear theory of

Rubbert and Landahl.(S)
The extension of this problem to a three dimensional archetypal problem
results from the following change of condition. The inlet flow is now allowed
to develop a velocity gradient along the span of the blade which generates a
span-wise nonuniform Mach number profile. This inlet Mach number profile will
itself be transonic possessing both supersonic and subsonic regions. 1In such
a three dimensional transonic regime, the structure of the sonic surface, shock
surface, and induced cross flows are of particular interest. Such a flow models
in many respects the relative Mach number profile which is incident on a transonic
turbomachine rotor.
In contrast to two dimensional flows, three dimensional transonic flows have

received little theoretical attention. The linearized non-1ifting transonic

cascade theory was developed by McCune(A)

(5)

in 1958 and recently extended to the
(6)

lifting case by Okurounmu and McCune. The recent work of Namba proceeds
from linearized theory to construct solutions for transonic shear flow over an
airfoil. The most significant result of this work was the development of complex
patterns of standing waves on the blade near the sonic spanwise stations. There
remains in this work, however, the fundamertal limitation of linearized theory:

the shock structure cannot be represented.

3. METHODS FOR THE CALCULATION OF INVISCID TRANSONIC FLOW
The systematic numerical study of inviscid compressible flow was first

M and Lax and Wendroff.(s) These

developed by Courant, Friedrichs, and Lewy
methods are time dependent initial value methods for hyperbolic fluid equations

in the sense that an initial fluid state is advanced in time subject to prescribed
boundary conditions in space. For situations in which only the steady flow
subject to time independent boundary conditions is required, the initial value
method may be used to develop this steady flow from an initial guess. The

desired steady flow is then obtained as the asvmptotic state for large values

of time.

It is necessary that weak solutions of the fluid equations be represented



by the methods i.e., that shock surfaces separating regions of elliptic and
hyperbolic behavior be permitted. The methods utilized in thils work are of
this variety. Shock surfaces are located internally. It is not necessary

to match elliptic and hyperbolic regions at an a priori unknown surface using
the Rankine-Hugoniot conditions. Instead, the shock becomes a sharply varying
(but continuous) region in which the shock is dispersed over 3-4 computing mesh
cells.

It should be noted that several other difference methods exist for integrating
the inviscid compressible flow equations. These methods include those of
Rusanovﬂg) Von Neumannglo) and others. 1In the class of problems in which we
are interested the resolution of sonic surfaces and weak shock waves is of extreme
importance. The resolving capability of the method is therefore of major interest.

(11)

Emery has compared the resolution offered by several of the methods described
above. His results showed that the Lax-Wendroff method (in either its original
or two-step form) offered the best resolution of the flow field of all the

(12)

methods. The Lax-Wendroff method in its two-step version [Richtmyer 1 was
therefore utilized in the present work.
The description of the two-step version of the Lax-Wendroff method is given

(12)

in considerable detail by Richtmyer We remark that the method is of second
order accuracy in time and note that the numerical stability of the method is

essentially governed by a limitation on time step At given by the Courant condition:

At < min

Ax
u| + c

where Ax is the spatial size of a mesh cell and ¢ and u are the local sonic

and fluid speeds respectively. The above result is obtained from a linearized
stability analysis of the Lax-Wendroff difference equations. This analysis also
shows that the Lax-~Wendroff method is neutrally stable in a numerical sense at

a sonic point or at a stagnation point. This fact suggests that numerical insta-
bilities could arise in a transonic calculation where there are significant regions
near the sonic speed. This has been found to be the case. When the Lax-Wendroff
method was used for the transonic airfoil problem, slowly growing instabilities
were observed. This situation may be corrected by adding to the Lax-Wendroff

equations an artificial diffusion term which is of third order in the time step

and therefore does not affect the truncation error of the scheme [Burstein§l3)
Lapidus(lh)]. This small diffusion term is sufficient to render the otherwise

neutrally stable method stable in sonic or near sonic regions.

Because of our interest in the three dimensional problem, the conservation



of computer execution time and memory becomes of importance. This general
consideration requires that each mesh point be used effectively. 1In the case

of flows over bodies, the strongest gradients are near and on the body so that

it seems reasonable to have most of the mesh points in the vicinity of and on

the body while fewer mesh points may be tolerated at larger distances from the
body. For the present class of problems, we have developed a mapping procedure
for allocation of the mesh in which the physical domain is mapped one to one

into a solution domain which is then uniformly discretized. The mapping function
is selected so that the uniform mesh in the solution domain maps into the physical
domain with a greater number of points in the region where maximum resolution is

desired. Further details of this mapping technique may be found in Sparis.(ls)

4. TFLUID EOUATIONS AND THFIR DIFFERFNCE FORMULATION

The formulation of the problem is centered on the geometry of fig.l. The
blade of chord 2%, thickness t and span D is suspended in the center of a
rectangular passage. In the problem to be discussed, the blade is symmetric
and parallel to the incident stream. With this symmetry, the walls parallel
to the span may simply be interpreted as fictitious symmetry boundaries for a
linear cascade. The inlet flow possesses uniform static thermodynamic properties
at the inlet, but a linearly varying velocity profile in the z direction along
the span, The fluid equations utilized are those for inviscid compressible flow
and the boundary conditions on the surface of the blade are those for inviscid
flow: vanishing normal velocity at the surface. The inlet state is prescribed
as discussed above. There appear to be a variety of ways to model thé exit bound-
ary depending on the kind of situation one is attempting to computationally simulate.
For the case of a single isolated rectilinear cascade one should apply the upstream
(inlet) and downstream (exit) boundary condition at 4+~ , -» respectively. Although
it is possible to map this infinite domain into a finite domain, and then carry
out the numerical work in the finite domain, it has been found adequate in many
cases to simply locate inlet and exit far enough upstream and downstream so that
the flow can be specified to be uniform in the axial direction e.g. Burstein.(l3)
That is the procedure initially adopted in this work although it may require mod-
ification for situations in which shocks escape from the cascade. It appears
feasible in such an event to adjust the exit boundary condition so that the reward
characteristics are properly located at the exit.

For a perfect gas of mass density p, momentum density in rectangular coordinate



directions x,y,z, given by m ,m ,m

y z

, and total energy density e, the inviscid,

compressible fluid equations may be expressed as

where

o0 , oF , 3G , oH
3 Tty Tz " 0
N
U is the fluid state vector
- "
o)
m
>
U=
z
> > > >
and F,G.H are functions of U:
" o -
X
2
mx/o+P
mxmy/p
mxmz/o
i (e+p)mx/p‘
m
z
mm /p
X 2
ﬁ(ﬁ) = mm /p
vy z
2
mz/p+p
(e+p)mz/p

The pressure p for a perfect gas is given by

p =y - l)(e -

20

mZ + m2 + m?
X y z)

where y is the ratio of specific heats.

e

m
y

mxmy/o

m2/p+p
y

mzmy/o

(e+p)my/p

-

(1)

(2)

(3)

(4)



If space and time are discretized by increments Ax,Ay,Az3 At with discrete

coordinates j, & , m, n such that x = jAx, y = 2Ay, z = mAz, ¢t = nAt and

ﬁ?,g,m denotes ﬁ(x,y,z,t), the two step Richtmyer version of the Lax-Wendroff
scheme(lz) is
Zokl an an 2n an on on
= . + U, + U, + U. 6
Boem T Uisem ¥ Ve 0m T U etm Y eetm * Y emen U5 g )
Jbe (g o
248x j+1,2,m j-1l,2,m
(5a)
A 2 )
ZAY js’Q+l:m j,Z—l,m
At (~> _ > )
20z Hj,z, m+1 Hj,g,m—l
ﬁn+2 = ﬁn _ bt ( >n+1 _ zntl
j’,Q,’m st’:m Ax j+l,2,m j"l,,Q,,m
At (+n+1 _ antl ) (5b)
Ay 3,2+1,m js2=1,m
At >n+1 _ zotl
Az j,L,mt+1 jsR,m-1
(8) (12)

As discussed by Lax and Richtmyer, the above difference scheme is stable

to small disturbances if

A 6

re € & 8x 6
/3 |u[+c

where Ax= Ay = Az. For unequal space increments, the above stability condition

is modified slightly [See Sparis(g)], however, for practical purposes, a working

stability requirement is

Atg%min s/ lu] + ¢!
’ )

where A is the minimum spatial mesh increment.



In addition, the scheme is neutrally stable to small disturbances in regions
where u = 0 or u = a; i.e., at stagnation points or sonic points. To stabilize
the scheme against higher order disturbances, an artificial diffusion term
which is of the order of the truncation error is added to the basic two step

difference scheme. This term has been taken as an extended version of that

proposed by Lapidus:(l4)
> kAt [ n n an >n n n >n >n
V. = e— |u -u | U. -U, )—|u u l . -U,
. X X -
j,2,m Ax %i41,0,m  %59,2,m ( j+l,e,m "j,2,m j,2,m  j-lgm Jrem j-1l,2,m

|

kAt [ n n >n > n an >n
+ —-—|u -u | U. -U, )—!u -u l U, -U, )
Ay yj,1+l,m yj,l,m ( Jo&t+l,m "j,2,m yj,l,m yy,l—l,m ( j,&,m j,2-1,m J
KAt [ n on >n >n >N
+ h -u l ., -U. )—Iu -u | U, ~-U,
Az Zj,Q,, 1 Zj,R,m( J,Q,,m+l js2,m Zj,Q,m Zj,JL,m—l ( Js,m J"Q'sm—l)
(8)

In the above U, U ,u are the three components of the fluid speed and k is a
non~-dimensional adjustable parameter of order unity. The term 3?,l,m is added
to the right hand side of Eq.(5b).
As noted previously, the inlet bhoundary condition at x = X is that of a
>
specified inlet state U(xi,y ,Z ,t). At the exit far downstream, x = Xy the
condition of axial uniformity is applied:
>
EL )

9X X = X

On the surface of the blade which is parallel to the z axis, there must be no
transport of mass, momentum, or energy across that surface. Although it is not

an essential simplification, it is useful to use the approximation of thin airfoil
theory and apply the blade boundary condition on the axis y = 0. Mappings or
interpolation represent alternative procedures which allow exact application of
the boundary conditions at the blade surface. 1In the present study, the specific

blade profiles which were examined were 8% thick parabolic profiles. The thin



airfoil approximation was compared with a mapping procedure which exactly treated
the thickness problem; for the 8% thick profiles, there was no detectable difference
between the two procedures. The thin airfoil treatment was therefore used in the
results discussed in the present report.

Denoting normal and tangential directions by n,t on the blade surface, the

surface conditions are:

m = 0 (normal mass)

m g 1

on = (normal momentum)

mngt =0 (tangential momentum) 9)
-9 1

mnp = (total energy)

If the values at mesh points in a rectangular x, y grid on either side of the
blade interface are denoted (+),(-) superscripts (fig.2) the above conditions

may be specified as

p—=p+
e” = ef
m~ = m+ cos(20) + mt sin(26)
x x v
m= = mt sin(20) - m" cos(28)
y b y (10)

where 6 is the angle between the y axis and the local normal at the blade surface.
These conditions serve to fix the exterior boundary values (-) in terms of the
interior values (+).

Because of interest in minimizing the number of mesh points for a given
resolution, a mapping procedure was used to improve the regolution near the blade.
Since the flow is principally axial with strong axial gradients, the x coordinate
was stretched according to the following mapping:

(x,y,2) > (&,y,2)
df = pdx
where u = ¢ /<> and ¢(x) 1is a magnification function which has a maximum
X

at x = and is monotone decreasing for |x| < X, o- The average value <y> is

(e]



A simple and useful magnification function is the '"Lorentz Line Shape' function

V() = —(—1——2— (11)

X - X
)
a

where the parameter a is the value of x where y(x) has the value 1/2. The
domain (£,v,z) becomes the solution domain which is uniformly discretized, and
hence, the mesh will be nonuniform in the x direction with a greater mesh point

density in the region x = x It should be noted that the stability requirement

o -
of the difference scheme must still be based upon the minimum physical spatial

increment, Ax . The only required change in the fluid equations and their corre-

X dx/ 3g
To give an illustration of the behavior of the transformation, for the para-

sponding difference equations is the replacement of 3 by (dg) 3

meter choices a=3.71, L=26.0, xo=0, 2=3.71 the maximum magnification factor p is
2.71 and the blade will have 2.12 times as many points as it would with a uniform
mesh in the x space. The correspondence between the solution space (£) and the

physical space (x) is shown in fig.3.

5. TWO DIMENSIONAL RESULTS

Before proceeding to the three-dimensional problem, a two-dimensional sub-
case of the general formulation (span-wise uniform inlet velocity) was examined.
The goal was to gain experience with resolution, stability, and accuracy in the
two-dimensional case. The specific case chosen was uniform inlet flow over an
8% thick parabolic blade. The initial state was a uniform flow throughout the
domain identical with the inlet flow, the inlet flow initially at Mach number
MO=O.65. As time progressed, the inlet Mach number was increased to 0.70, 0.75,
0.80, 0.84. The results of this time-dependent computer experiment are shown in

7. (15)

figs. 4 through Full details may be found in Sparis. These results lead
to the following general conclusions:
1. The crucial flow field features of interest in this general problem --
sonic line and shock line -- could be resolved quite satisfactorily with a
minimum discretization of the domain. These calculations were carried out
with an intentionally coarse grid in anticipation of the more demanding re-
quirements of storage and speed for a three dimensional calculation. The

axial direction is represented by 40 mesh points, 27 of which are located on



the blade. Since the shock is dispersed over 3~4 mesh points, the shock
thickness is of the order of slightly more than 107 of the chord. While

one would prefer better, this resolution is adequate to quite clearly
identify the phenomenon as a shock and locate the center of the dispersed
region (figs.5,7). A separate application of the Rankine-Hugoniot conditions
on either side of the shock shows them to be satisfied to the accuracy of

the discretization error in the calculation. A calculation of the entropy

of the flow field shows it constant on either side of the shock with the
proper jump across the shock. Since there always exists a region within the
shock where the Mach Number is unity, the rear portion of the sonic line

(£ig.6) also shows the shock location quite clearly,

2. The near neutral stability of the Lax~-Richtmyer method in the transonic
regime requires the use of a higher order diffusion term to provide numerical
stabilization. It appears that this term may have some effect in introducing
a slight distortion in the symmetry of the flow (especially evident in the
shockless flow cases shown in fig.4). The elimination of this slight stream-

line distortion is currently being investigated.

3. The mesh allocation system based on a mapping seems to be satisfactory.
Although the hlade is only 1/5 of the axial passage length, approximately
60% of the mesh points were located on the blade where the gradients were

strongest.

6. THREE DIMENSIONAL RESULTS

The initial flow for the three dimensional experiment was a span-wise uniform
inlet flow at inlet Mach number 0.65. For the 8% thick parabolic profile at this
Mach number the flow over the entire blade is subsonic. At the initial time the
inlet flow is slowly sped up along the span with a linear velocity variation along
the span. The span-wise nonuniformity is thus introduced continuously rather than
discontinuously as time proceeds. In this way the development of the three-
dimensional features of the flow from the purely two-dimensional flow may be observed
as time proceeds. In the experiment to be described, the inlet velocity profile
develops until the Mach number reaches a maximum value of 1.2 at the tip end of
the blade. The Mach number at the hub remains fixed at 0.65. The time scale for
the development of the profile is 1 blade chord crossing time for a sound wave at

the inlet temperature.
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Some preliminary results of this three~dimensional computer experiment are
shown in the sequence of figures 8 through 21 . Each figure corresponds to
an interval of 100 cycles which in turn corresponds to one chord crossing time
at the inlet sonic speed at the hub. The sequence begins 300 cycles after the
initiation of the inlet speed-up [fig. 8 ] and runs to 1100 cycles [fig. 1A ].

At 1100 cycles the flow is very close to its final asymptotic steady state as can
be seen in fig. 21 .

At 300 cycles, the entire flow field is still subsonic, but the tip of the
blade is beginning to show the effect of the spanwise nonuniformity. The maximum
Mach number in the vicinity of the blade at this stage of the evolution of the
flow is 0.93 and it occurs near the mid-chord point at the tip. After 300 cycles,
the tip station possesses a region of supersonic flow. After 500 cycles, the
maximum Mach number on the blade is 1.15 and is still at the tip. The point of
maximum Mach number now begins to shift to the rear of the profile. At 500 cycles,
the Mach number profiles steepens at the rear of the blade tip and by 600 cycles
a weak shock surface is in evidence at the tip. This shock surface which inter-
sects the blade weakens along the span running from tip to hub and merges with
the sonic surface which intersects the span about two-thirds of the distance from
hub to tip. Once the shock forms, the static pressure rise at the tip end of the
passage is rapidly communicated across the passage to the hub end. This high back
pressure on the streamlines at the hub end begins to decelerate the hub flow (which
is still subsonic) as can be seen by the steady hub Mach number decrease from about
400 cycles. 1In fact, thehub flow accelerates steadily in response to the inlet
speedup until about 400 cycles when the tip shock forms. From the onset of the
tip shock, the hub flow steadily decelerates. By 1100 cycles, the hub exit Mach
number is significantly less than the hub inlet Mach number.

At 1100 cycles the tip shock has strengthened and spread over half the blade
span. From about 400 cycles, the incident flow at the leading edge of the tip is
supersonic and hence the Mach number profile at the leading edge steepens forming
a weak leading edge shock. Because of the poor resolution in the vicinity of the
sharp leading edge, the leading edge shock is not as well represented as the rear
shock.

It should be noted that once mixed flow exists in the vicinity of the blade,
the Mach number profiles begin to develp fine scale wave-like patterns. It may
well be that these are the long wavelength components of the complex steady wave

(6)

structures which were predicted from linearized theory by Namba.

11



The cross flow and static pressure distribution in the plane of the blade
at 1100 cycles are shown in figs. 19 and 20 . In general, the cross flow
may be interpreted in terms of the static pressure gradients. The inlet
stagnation pressure profile is manifested as a static pressure profile at the
leading edge of the blade and a strong cross flow from tip to hub is set up
in this region. Since the flow at the supersonic tip expands over the blade
to much lower back pressure than the subsonic hub flow, this leading edge cross
flow is eventually reversed towards the rear of the chord where the tip static
pressure falls below the hub static pressure. The cross flow reverses at this
point and flows back towards the tip. After the shock, however, there is a
slightly higher static pressure near the tip which again reverses the cross
flow in the direction of the hub.

Perhaps the most remarkable feature of this experiment is the striking fact
that the three-dimensional features of the flow field appear very much like a
set of weakly interacting two-dimensional strips. Perhaps this is because the
span length is rather small compared to the blade period (1/2.7) and this imposes
a rather strong tendency for two-dimensional behavior. The inlet Mach number
profile in the present calculation was rather strong in spanwise gradient. One
suspects that for more ''transonic" inlet profiles (e.g. Mhub = (.95, Mtip = 1.05)
more complex surface Mach number profile behavior would result as the flow engaged
the subsonic region characteristic of the hub and the supersonic Ackeret profiles
characteristic of the tip. A second noteworthy feature is the existence of the
shock surface near the tip. There has been some speculation that the three-
dimensional relief provided by a spanwise nonuniformity would relieve the

necessity of hyperbolic elliptic transition through a compression discontinuity.

This appears not to be the case.
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Boundary conditions and mesh points at blade surface.
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Figure 3.

Physical domain and solution domain correspondence.
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Sonic line development in two-dimensional time varying flow.

M, = 0.8,
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Figure 5, Transonic Pressure coefficient development in two-dimensional

time varying flow. M, = 0.84.
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Figure 6.

Mach number development in two-dimensional time varying flow.



03

Kb AR \ \ —°

S TN

Figure 7.

Mach number contours in time dependent two-dimensional flow at

1000 cycles. M= 0.84.
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Figure 8.

Mach number distribution in the plane of the blade at 300 cycles.



22

Figure 9.

Mach number distribution in the plane of the blade at 400 cycles.
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Figure 10,

Mach number distribution in the plane of the blade at 500 cycles.
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Figure 11.

Mach number

distribution in the plane of the blade at 600 cycles.
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Figure 12.

Mach number distribution in the plane of the blade at 700 cycles.
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Figure 13.

Mach number distribution in the plane of the blade at 800 cycles.
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Figure 15,

Mach number distribution in the plane of the blade at 1000 cycles.
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Figure 16.

Mach number distribution in the plane of the blade at 1100

cycles.
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Figure 17.

Static pressure distribution in the plane of the blade at 700 cycles.
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Figure 18.

Static pressure distribution in the plane of

the blade at 1100 cycles.
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Figure 19. Cross flow distribution in the plane of the blade at

1100 cycles,



1.301— .
oo %"
= .,Al’
/J.’
o 9
w 1.20{— o
= /
o TIP— /'
& - Ty
/
B 110 /
< /
J b
a | _ //
— ®
< /
x .00 /
w ;l
o | /
- .’
Z /
T 0.90|— /
Qq) I. o~ O~
‘s “e— HUB
= B ot e
/‘ \.
”s-./" \
0.80— \
\
— .s./.\
TO-e_o_ —,,_90—0-0
ozol o 1 v I o 1 o [T |
200 400 600 800 1000 120
NO. OF CYCLES
Figure 20. Mach number evolution at hub and tip., MNote steady decrease of

hub Mach number once shock forms at tip.
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